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Abstract This paper reports an updated parameterization
for a CdTe bond order potential. The original potential is a
rigorously parameterized analytical bond order potential for
ternary the Cd–Zn–Te systems. This potential effectively
captures property trends of multiple Cd, Zn, Te, CdZn,
CdTe, ZnTe, and Cd1-xZnxTe phases including clusters,
lattices, defects, and surfaces. It also enables crystalline
growth simulations of stoichiometric compounds/alloys
from non-stoichiometric vapors. However, the potential
over predicts the zinc-blende CdTe lattice constant com-
pared to experimental data. Here, we report a refined ana-
lytical Cd–Zn–Te bond order potential parameterization
that predicts a better CdTe lattice constant. Characteristics
of the second potential are given based on comparisons
with both literature potentials and the quantum mechanical
calculations.
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Introduction

II–VI semiconductor compounds such as CdTe andCd1-xZnxTe
are used widely for radiation detection [1] and solar cell appli-
cations [2]. The performance of these materials is limited by
various atomic/micro scale defects [3–6]. In order to enable
high-fidelity atomistic simulations of defects in these materials,
we recently developed an analytical Cd–Zn–Te bond-order
potential (BOP) [7–12] and incorporated it in advanced molec-
ular dynamics codes LAMMPS [13]. This analytical BOP was
derived directly from quantum mechanical theories by Pettifor
and collaborators [14–16] considering both σ and π bonding
effects. Therefore, it is fundamentally far more transferable than
other empirical interatomic potentials [17–20]. In particular, our
first parameterization of the potential indicates that the BOP not
only captures well the property trends of a variety of Cd, Zn, Te,
CdZn, CdTe, ZnTe, and Cd

1-x
ZnxTe phases including clusters,

lattices, defects, and surfaces, but also enables the correct
crystalline growth simulations of various ground state
phases under a variety of chemical vapor deposition condi-
tions [7–12, 21]. One deficiency of our previous parame-
terization (termed as BOPa), however, is that it over pre-
dicts the zinc-blende (zb) CdTe lattice constant as com-
pared to the experimental data. Here, we provide a refined
parameterization of the analytical Cd–Zn–Te BOP (termed
as BOPb) that removes this problem while maintaining the
transferability of the original parameterization. Modifying
a BOP parameterization is not a trivial task and requires the
same rigorous testing as the first parameterization. Details
of the formalisms and parameterization procedures of the
potential have been described in great detail previously [7, 8]
and hence we have included a brief review of the potential in
“BOP formulation and parameterization” section. During the
parameterizing, DFT values are used as reference and target
values for the fitting process. The methods used for the DFT
calculations are described in “DFT methods” section and [7].
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Materials and methods

BOP formulation and parameterization

For BOP formulation and parameterization, see Appendix.
For more detailed discussion and descriptions of all equations,
please see [7].

An effective approach to ensure a highly transferable,
growth-simulation-enabling interatomic potential for semicon-
ductors is to directly fit (or at least monitor) the atomic vol-
umes, cohesive energies, and elastic properties of a correct set
of target structures. The target structures included are listed in
[7]. While all these phases are not used in a particular param-
eterization, monitoring the energies of many structures helps
select the important ones and their weighting factors for fitting
to ensure the lowest energies for the equilibrium phases.

Appropriate target structures and fitting methods alone are
not sufficient to create a physically sound BOP. Many param-
eters critically require valid bounds. It is not trivial to determine
the bounds of all the parameters. The bounds of the parameters
that we used do not necessarily represent the optimum choices,
but were obtained from a combination of physical intuition and
extensive trial-and-error experimentations. One physical re-
quirement described in [7] determines m/n to be near 2.0. In
addition, the pair function parameters are constrained so that
Eqs. (5)–(7) decay to small values near the cutoff distances
even without multiplying them by the cutoff function. Finally,
the parameters of the angular function are constrained so that
Eq. (10) is monotonic between θ=0° and θ=180°.

The fitting procedure follows a similar method to that of
Albe et al. [24] used to parameterize Tersoff potentials. Sym-
bolic computations were performed using Mathematica [25]
to derive complicated expressions for the cohesive energies,
pressure, and elastic constants of various structures. Four
Mathematica built-in numerical optimization routines, namely
a conjugate gradient method [26]; the downhill simplex meth-
od of Nelder and Mead [27]; a genetic algorithm [28]; and
biased random walk (simulated annealing) [29], were all used
to determine the parameters that minimize the mean-square
difference between the target and predicted properties (bond
length, bond energy, and bulk modulus). Further discussion
and description of these processes are included in [7].

DFT methods

Our DFT results are obtained using the same techniques as our
previous work [7, 8]. The simulations were based on spin-

polarized, generalized gradient approximation (GGA)
methods using projector-augmented-wave (PAW) pseudo-
potentials with a dispersion-corrected Perdew-Burke-
Ernzerhof (PBE-D2) functional [30]. Within the DFT-D2
approach [31, 32], an atomic pair-wise dispersion correction
is added to the Kohn-Sham part of the total energy (EKS-DFT)
as

EDFT�D ¼ EKS�DFT þ Edisp; ð1Þ

where Edisp is given by

Edisp ¼ −s6
XN at−1

i¼1

X
j¼iþ1

N atX
g

f damp Rij;g

� � Cij
6

R6
ij;g

: ð2Þ

Here, the summation is over all atom pairs i and j , and over all
g lattice vectors with the exclusion of the i = j contribution
when g =0 (this restriction prevents atomic self-interaction in
the reference cell). The parameter C6

ij is the dispersion coef-
ficient for atom pairs i and j , calculated as the geometric mean

of the atomic dispersion coefficients: Cij
6 ¼

ffiffiffiffiffiffiffiffiffiffiffi
Ci

6C
j
6

q
:

The s6 parameter is a global scaling factor, which is spe-
cific to the adopted DFT method (s6=0.75 for PBE), and R ij,g

is the interatomic distance between atom i in the reference cell
and j in the neighboring cell at distance |g |. A cutoff distance
of 30.0 Å was used to truncate the lattice summation. In order
to avoid near-singularities for small interatomic distances, the
damping function has the form

f damp Rij;g

� � ¼ 1

1þ exp −d Rij;g=RvdW−1
� �� � ; ð3Þ

where R vdW is the sum of atomic van der Waals radii
(RvdW = RvdW

i + RvdW
j), and d controls the steepness of

the damping function.
For all the small-cluster and bulk-lattice calculations, we

used a very high cutoff energy of 500 eV for the plane-wave
basis set, and the Brillouin zone was sampled using a dense
10×10×10 Gamma-centered Monkhorst-Pack grid. In addi-
tion to spin-polarization and dispersion effects, we also in-
cluded a relativistic spin-orbit coupling treatment for all the
valence electrons in both the small-clusters and bulk-lattice
calculations. Unconstrained geometry optimizations of both
the ions and the unit cell were carried out. To prevent spurious
interactions between adjacent clusters for the small-cluster
calculations, the vacuum along all 3 axes was set to 25 Å
during the geometry optimization.

Table 1 Global and point-
dependent bond-order potential
(BOP) parameters

Symbol ζ1 ζ2 ζ3 ζ4 pπ,Cd pπ,Te pπ,Zn

Value 0.00001 0.00001 0.00100 0.00001 0.420000 0.460686 0.420000
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Since the point-defect and surface calculations require the
use of larger supercells and significantly more atoms (>200
atoms), a smaller 300 eV cutoff energy was used for both
calculations. For this same reason, we did not include spin-
orbit effects in these large supercell systems, although we still
carried out these calculations with unconstrained spin-polarized
conditions. In the point-defect calculations, a large 3×3×3
supercell was used and, therefore, a smaller 2×2×2 Gamma-
centered Monkhorst-Pack grid was utilized. For the surface
calculations, a slab geometry was chosen, which consisted of
seven layers of CdTe and 35 Å of vacuum between adjacent
slabs. In these calculations, a 4×4×1 Gamma-centered
Monkhorst-Pack grid was utilized. Unconstrained geometry
optimizations of both the ions and the unit cell were carried out.

Results and discussion

A complete list of the parameters for BOPb is summarized in
Tables 1, 2 and 3 for global/point, pair, and three-body pa-
rameters, respectively, with the original parameters from
BOPa in parenthesis when they differ.

Compared with BOPa, BOPb modifies only the Cd–Te
pair parameters and Cd–Zn–Te three-body parameters,
resulting in changes only to the properties of binary
Cd–Te and ternary Cd–Zn–Te phases. As a result, only
these phases are considered. To examine numerically the
transferability of sizes and energies to different CdTe
environments, bond lengths/lattice parameters and cohe-
sive energies of different Cd–Te clusters (bond lengths)
and lattices (lattice parameters) obtained from BOPb are
compared in Table 4 with those [7] obtained from den-
sity function theory (DFT) calculations, BOPa, Stillinger-
Weber (SW) [17], Tersoff-Rockett (TR) [20], and exper-
iments [22]. Table 4 indicates that, for the equilibrium
CdTe-zb structure, BOPb indeed improves over BOPa on
reproducing more closely the experimental lattice con-
stant whereas the cohesive energy remains approximately
unchanged. To clearly see the lattice parameter and en-
ergy trends of other metastable phases, Table 4 is
reproduced in Figure 1a,b for atomic volume (related to
lattice parameter) and cohesive energy, respectively,
where the volumes and energies are normalized against
the respective values of the lowest volume or energy
structure as determined from DFT (see “DFT methods”

Table 3 Three-body-dependent BOPb parameters (with BOPa parameters in parenthesis when different)

Symbol Cd-centered triples j-Cd-k

CdCdCd CdCdTe CdCdZn TeCdTe TeCdZn ZnCdZn

g0 1 1 1 1 1 1

bσ 0.762039 0.208810 (1.000000) 0.433692 0.200000 0.824321 (0.882784) 0.455028

uσ −0.400000 −0.168759 (0.099711) 0.100000 −0.400000 (−0.383360) 0.015663 (0.100000) −0.085972
Symbol Te-centered triples j-Te-k

CdTeCd CdTeTe CdTeZn TeTeTe TeTeZn ZnTeZn

g0 1 1 1 1 1 1

bσ 0.259985 (0.200000) 0.807985 (0.999854) 0.422411 (0.364627) 0.669623 0.734966 0.200000

uσ −0.400000 0.022436 -(0.003929) −0.333333 −0.141521 0.100000 −0.400000
Symbol Zn-centered triples j-Zn-k

CdZnCd CdZnTe CdZnZn TeZnTe TeZnZn ZnZnZn

g0 1 1 1 1 1 1

bσ 0.200000 0.831080 (0.939572) 0.758047 0.200000 1.000000 1.000000

uσ −0.223201 0.100000 (−0.400000) 0.100000 −0.400000 −0.001972 −0.400000

Table 2 Pair-dependent CdTe BOPb parameters (BOPa parameters in parenthesis when different)

Symbol r0 rc r1 rcut nc
Value 2.96765 (3.1276) 2.96765 (3.1276) 3.80853 (4.0138) 4.64941 (4.9000) 2.811251

Symbol m n ϕ0 βσ,0 βπ,0

Value 2.388647 (2.5878331) 1.188381 (1.287478) 0.654330 (0.631440) 0.836402 (0.825290) 0.030748 (0.031743)

Symbol cσ fσ kσ cπ aπ
Value 1.196365 (1.286955) 0.500000 0 1 1
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section). Clearly, BOPb retains approximately the volume
and energy trends of BOPa, which improves over other
potentials, especially considering that BOPs are also
transferable to elemental Cd, and Te environments where
the SW and TR potentials give incorrect lowest energy
phases.

The compositions of ternary systems are bounded by Cd,
Zn, Te elements and CdTe, CdZn, and TeZn binary phases.
With the correct trends of atomic volumes and energies of
various elemental and binary environments verified, the most
important properties to capture for the ternary systems are the

lowest energy phase and the energy trends at different com-
positions compounds. The lowest energy phase can be tested
most effectively using vapor deposition simulations as will be
described below. Here we examine the energy trends using
five compounds with increasing Zn content: CdTe (zb),
Cd3ZnTe4 (sulvanite), CdZnTe2 (tetragonal p4m2), CdZn3Te4
(sulvanite), and ZnTe (zb). The energy trends calculated from
various models are shown in Figure 2. It can be seen that
BOPb and BOPa have similar magnitudes of energy, which
are higher than the DFT values. This is because the BOPs are
fitted to experimental energies of CdTe and ZnTe zinc-blende

Fig. 1 (Color online) Normalized a atomic volumes and b cluster and lattice binding/cohesive energies for a variety of CdTe structures

Table 4 Energies E (eV) and bond distances (clusters)/lattice parameters (lattices) a, c (Å) for various CdTe clusters and lattices obtained from different
models. Cluster abbreviations: di dimer, tri trimer, rhom rhombus; lattice abbreviations: B1 NaCl, B2 CsCl, wz wurtzite, zb zinc-blende

Structure DFTa (exp)* BOPaa BOPb SWb TRc

a,c(Å) Ec a,c(Å) Ec a,c(Å) Ec a,c(Å) Ec a,c(Å) Ec

di 2.61 −0.519 2.92 −0.596 2.77 −0.588 2.82 −0.515 2.77 −0.573
tri (Cd2Te) 2.81 −0.561 2.85 −0.641 2.85 −0.639 2.82 −0.687 2.77 −0.764

3.47 3.09 2.94 4.60 4.96

tri (CdTe2) 4.07 −1.269 2.80 −1.131 2.80 −1.162 3.12 −0.695 2.91 −0.775
2.59 3.20 3.02 3.10 3.01

rhom 2.77 −1.306 3.11 −1.057 2.94 −1.106 2.88 −0.952 2.88 −0.993
B1 6.04 −2.287 6.19 −2.140 6.12 −2.056 6.35 −1.796 5.85 −2.177
B2 3.81 −2.006 3.83 −1.656 3.95 −1.663 3.94 −1.719 3.63 −2.339
wz 4.52 −2.279 4.84 −2.173 4.59 −2.149 3.98 −2.060 3.97 −2.060

7.32 7.88 7.49 7.51 7.49

zb 6.52 (6.48d)* −2.331 (−2.178e)* 6.83 −2.173 6.48 −2.149 6.51 −2.060 6.49 −2.060

* Experimental values for the equilibrium zinc-blende CdZn
aDFT and BOPa data [7]
b Stillinger-Weber (SW) data [17]
c Tersoff-Rockett (TR) data [20]
d Experimental data [33]
e Experimental data [22]
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structures that do not necessarily match exactly the DFT
values. On the other hand, BOPb does predict a less curvature
of the energy vs structure curve, which seems to match better
with the DFT results.

Elastic constants and melting temperature of the CdTe-zb
structure were also calculated following the previous approach
[7]. The results obtained from different models are shown in
Table 5. While c11 and c12 are slightly lower than the experi-
mental values, the general agreement between BOPb and exper-
iments is maintained. In addition, BOPb predicts a melting
temperature of 1350–1430 K, closer to the experimental value
than BOPa.

For zinc-blende CdTe, the previousmethod [7] was also used
to calculate the energies of various defects including Cd vacan-
cy (VCd), Te vacancy (VTe), Cd at Te antisite (CdTe), Te at Cd
antisite (TeCd), Cd interstitial surrounded by the Te tetrahedron
shell (Cdi), Te interstitial surrounded by the Cd tetrahedron
shell (Tei), and <110> and <100> dumbbell interstitials. The

defect energies obtained from different models are compared in
Fig. 3. It can be seen that BOPb retains the energy sequence of
BOPa very well, except for TeCd, which is substantially
reduced.

CdTe surface reconstructions are also examined. Figure 4
shows the energies (Γ) of various surface reconstructions as a
function of the chemical potential difference (Δμ) as calculated
fromBOPb (see [7] for details). It can be seen from Figure 4 that
BOPb predicts surface dimers to be stable for the Cd terminated
surfaces with a coverage (ξ) of 1.0 [i.e., Cd-c(1x2) surface].
BOPa, on the other hand, predicts that the surface dimers are
unstable [7]. Experimentally, dimer separation has been seen,
yet the DFTsimulations predict dimerization. In addition, BOPb
predicts Te-c(2×2) and Cd-(1×2) (coverage 1.0) as the low
energy reconstructions for Te-rich (Δμ <0) and Cd-rich
(Δμ >0) conditions, respectively, whereas BOPa predicts
Te-(2×1) and Cd-(1×1) (coverage 1.0) as the low energy re-
constructions for Te-rich and Cd-rich conditions, respectively.
Both of these differ from the DFT results, which predict low
energy reconstructions of Cd-(2×1) and Cd-c(2×2) both with
coverage of 0.5.

Fig. 3 (Color online) Various defect energies of the CdTe-zb phase

Fig. 4 (010) CdTe surface energy phase diagrams predicted by BOPb

Table 5 Elastic constants c ij (i , j=1, 2, 4) (GPa) andmelting temperature
Tm (K) of the zinc-blende CdTe

Property exp DFTb BOPac BOPb SWd TRe

c11 (GPa) 53.3f 53.2 53.2 51.6 44.3 50.7

c12 (GPa) 36.5f 36.0 36.0 29.2 19.6 37.5

c44 (GPa) 20.4f – 16.4 21.0 18.0 15.2

c44
a (GPa) – 31.8 40.6 42.4 30.7 46.8

Tm (K) 1,365g – 1,550–
1,600

1,350–
1,430

1,360–
1,390

700–
800

aUnrelaxed
bDFT data [34]
c BOPa data [7]
d Stillinger-Weber (SW) data [17]
e Tersoff-Rockett (TR) data [20]
f Experimental data at 300 K [35]
g Experimental data [36]

Fig. 2 (Color online) Cohesive energies for various CdZnTe compounds
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Vapor deposition simulations sample a variety of configura-
tions by injecting adatoms at random locations and random
compositions on the surface of a ground state phase. The
structures sampled through vapor deposition are not
predetermined and are therefore the most important tests to
validate the transferability of a potential. If a potential correctly
captures the lowest energy for the ground state phase, a crystal-
line, stoichiometric growth would be predicted even for non-
stoichiometric vapor fluxes. Potentials that capture the incorrect
lowest energy grounds state phase would likely result in an
amorphous growth [7]. As inherited from BOPa, BOPb can
predict the crystalline growth of hexagonal close packed (hcp)
Cd, hcp Zn, A8 Te, and zb ZnTe [7, 8]. Figure 5a,b shows vapor
depositions simulations of CdTe andCd0.5Zn 0.5Te, respectively,
on a (010) zb CdTe substrate, using BOPb and the same
simulation technique as BOPa [7]. These simulations verify that
BOPb can predict the crystalline growth of CdTe and
Cd1-xZnxTe on alloyed compounds.

In summary, we have parameterized a second analytical bond
order potential BOPb for the Cd-Zn-Te ternary systems. This
new potential more accurately captures the lattice constant
for the zinc-blende CdTe phase while maintaining the gen-
eral property trends of the old potential. In fact, the only
noticeable difference is that BOPb predicts a substantially
lower TeCd defect energy. Like the old potential, BOPb can

predict crystalline growth of CdTe and Cd1-xZnxTe. This
not only verifies the transferability of the potential, but also
allows the defects to be studied from growth simulations
without any assumptions regarding defect configurations
and formation mechanisms. Many previous potentials lack
such a crystalline growth simulation capability [21].
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Appendix

For the BOP formulation the total energy of a system is
expressed as

E ¼ 1

2

X
i¼1

N X
j¼i1

iN

ϕij rij
� �

−
X
i¼1

N X
j¼i1

iN

βσ;ij rij
� �

⋅ Θσ;ij

−
X
i¼1

N X
j¼i1

iN

βπ;ij rij
� �

⋅ Θπ;ij

ð4Þ

Fig. 5a.b (Color online) Growth structure predicted by BOPb. a CdTe, b zb-Cd0.5Zn0.5Te deposited on an initial (010) zb-CdTe substrate shaded in pink
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where ϕ ij(r ij) is a short-range two-body potential, βσ,ij(r ij) and
βπ,ij(r ij) are, respectively, σ and π bond integrals, Θσ,ij and
Θπ,ij are σ and π bond-orders. ϕ ij(r ij), βσ,ij(r ij), and βπ,ij(r ij)
are expressed in a general form as

ϕij rij
� � ¼ ϕ0; ij ⋅ f ij rij

� �mij ⋅ f c;ij rij
� � ð5Þ

βσ;ij rij
� � ¼ βσ;0;ij ⋅ f ij rij

� �nij ⋅ f c;ij rij� � ð6Þ

βπ;ij rij
� � ¼ βπ;0;ij ⋅ f ij rij

� �nij ⋅ f c;ij rij� � ð7Þ

where f ij(r ij) is a Goodwin-Skinner-Pettifor (GSP) radial func-
tion [23], and f c,ij(r ij) is a cutoff function (see [7] for formu-
lation). Furthermore, Θσ,ij is given by:

Θσ;ij ¼ Θs;ij Θ 1=2ð Þ
σ;ij ; f σ;ij

� �
⋅

1− f σ;ij−
1

2

	 

⋅ kσ;ij ⋅

β2
σ;ij rij
� �

⋅ R3σ;ij

β2
σ;ij rij
� �þ β2

σ;ij rij
� �

⋅ Φi
2σ þ β2

σ;ij rij
� �

⋅ Φ j
2σ

2
þ ζ2

2664
3775

ð8Þ
Where, Φ 2σ

i and Φ 2σ
j are local variables arising from

electron hop paths. In addition, Φ 2σ
i and Φ 2σ

j have the
same formulation but are merely evaluated for atoms i
and j , respectively. Since only the product of βσ,ij

2 (r ij)
⋅Φ 2σ

i is required for Eq. (8), the formulations are given
as:

β2
σ;ij rij
� �

⋅ Φi
2σ ¼

X
k ¼ i1
k≠ j

iN

g2σ;jik θjik
� �

⋅ β2
σ;ik rikð Þ ð9Þ

where θ jik is the bond angle at atom i spanning atoms j and k ,
and the function gσ,jik(θ jik) introduces angular-dependent con-
tributions to the bonding resulting from the overlap of the
hybridized atomic orbital. The three-body angular function is
written as

gσ;jik θjik
� � ¼ bσ;jik−g0; jik

� �
⋅ u2σ; jik− g0; jik þ bσ;jik

� �
⋅ uσ; jik

2 ⋅ 1−u2σ; jik
� �

þ g0; jik þ bσ; jik
2

⋅ cosθjikþ
g0; jik−bσ; jik þ g0; jik þ bσ; jik

� �
⋅ uσ;jik

2 ⋅ 1−u2σ; jik
� � ⋅ cos2θjik

ð10Þ

where gσ,jik, bσ,jik, and uσ,jik are three-body-dependent
parameters. The half full valance bond order is given
by:

Θ 1=2ð Þ
σ; ij ¼ βσ;ij rij

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2
σ;ij rij
� �þ cσ;ij ⋅ β2

σ;ij rij
� �

⋅ Φi
2σ þ β2

σ;ij rij
� �

⋅Φ j
2σ

h i
þ ζ1

r
ð11Þ

Equation (8) also requires knowing βσ,ij
2(r ij)⋅R3σ,ij given by

β2
σ;ij rij
� �

⋅R3σ;ij ¼
X

k ¼ i1
k; j ¼ n

iN

gσ θjik
� �

⋅gσ θijk
� �

⋅gσ θikj
� �

⋅βσ;ik rikð Þ⋅βσ;jk rjk
� �

ð12Þ
The symmetric band-filling function is expressed as the con-
tinuous function

Θs;ij Θ 1=2ð Þ
σ;ij ; f σ;ij

� �
¼

Θ0 þΘ1 þ S ⋅ Θ 1=2ð Þ
σ;ij −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Θ0 þΘ1 þ S ⋅ Θ 1=2ð Þ

σ;ij

� �2
−4 −ε

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ S2

p
þΘ0 ⋅ Θ1 þ S ⋅ Θ1 ⋅ Θ

1=2ð Þ
σ;ij

� �r
2

ð13Þ
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where

ε ¼ 10−10

Θ0 ¼ 15:737980 ⋅
1

2
− f σ;ij−

1

2

���� ����	 
1:137622

⋅ f σ;ij−
1

2

���� ����2:087779
S ¼ 1:033201 ⋅ 1−exp −22:180680 ⋅

1

2
− f σ;ij−

1

2

���� ����	 
2:689731
" #( )

Θ1 ¼ 2 ⋅
1

2
− f σ;ij−

1

2

���� ����	 


8>>>>>>>>><>>>>>>>>>:
ð14Þ

The π bond-order Θπ,ij used in Eq. (4) is expressed as

Θπ;ij ¼
aπ;ij ⋅ βπ;ij rij

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2
π;ij rij
� �þ cπ;ij ⋅

β2
π;ij rij
� �

⋅ Φi
2π þ β2

π;ij rij
� �

⋅ Φ j
2π

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β4
π;ij rij
� �

⋅ Φ4π þ ζ3

q !
þ ζ4

vuut
þ aπ;ij ⋅ βπ;ij rij

� �
β2
π;ij rij
� �þ cπ;ij ⋅

β2
π;ij rij
� �

⋅ Φi
2π þ β2

π;ij rij
� �

⋅ Φ j
2π

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β4
π;ij rij
� �

⋅ Φ4π þ ζ3

q
þ

ffiffiffiffiffi
ζ3

p !
þ ζ4

vuut ð15Þ

where aπ,ij and cπ,ij are pair parameters, ζ3 and ζ4 are constants,
and Φ2π

i ,Φ2π
j , Φ4π are local variables.

The βπ,ij
2 (r ij) ⋅Φ 2π,ij

i and βπ,ij
4 (r ij) ⋅Φ 4π,ij terms used in

Eq. (15) can be written as

β2
π;ij rij
� �

⋅ Φi
2π;ij ¼

X
k ¼ i1
k≠ j

iN

pπ;i ⋅ β
2
σ;ik rikð Þ ⋅ sin2θjik þ 1þ cos2θjik

� �
⋅ β2

π;ik rikð Þ
h i

ð16Þ

β4
π;ij rij
� �

⋅Φ4π;ij ¼ 1

4

X
k ¼ i1
k≠ j

iN

sin4θjik ⋅βb 4
ik rikð Þ þ 1

4

X
k ¼ j1
k≠i

jN

sin4θijk ⋅ βb 4
jk rjk
� �

þ 1

2

X
k ¼ i1
k≠ j

iN X
k 0 ¼ k þ 1
k 0≠ j

iN

sin2θjik ⋅ sin2θjik 0 ⋅βb2ik rikð Þ ⋅βbik02 rik0ð Þ ⋅ cos Δψkk0ð Þ

þ 1

2

X
k ¼ j1
k≠i

jN X
k 0 ¼ k þ 1
k 0≠i

jN

sin2θijk ⋅ sin2θijk 0 ⋅βbjk2 rjk
� �

⋅βbjk 02 rjk0
� �

⋅ cos Δψkk0ð Þ

þ 1

2

X
k 0 ¼ i1
k 0≠ j

iN X
k ¼ j1
k≠i

jN

sin2θjik 0 ⋅ sin2θijk ⋅βbik02 rik0ð Þ ⋅βbjk2 rjk
� �

⋅ cos Δψkk0ð Þ

ð17Þ
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With

bβ2

ik rikð Þ ¼ pπ;i ⋅ β
2
σ;ik rikð Þ−β2

π;ik rikð Þ ð18Þ

The βπ,ij
4 (r ij) ⋅ Φ4π,ij term contains four-body dihedral angles

Δψkk ′ important in π bonding, and can be calculated as

cos Δψkk0ð Þ ¼

2 cosθkik 0−cosθjik 0 ⋅ cosθjik
� �2

sin2θjik ⋅ sin2θjik 0
− 1 or

2 ik0
→

⋅ jk
→

ik0
→
������
������⋅ jk→
������
������
þ cosθijk ⋅ cosθjik 0

0BBBBBB@

1CCCCCCA

2

sin2θijk ⋅ sin2θjik 0
− 1

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
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For more detailed discussion and descriptions of all equations,
please see [7].

The BOP parameterization of CdTe can be done indepen-
dently for elemental Cd, elemental Te, and finally for CdTe.
As stated above, the ability to capture crystalline growth is a
critical component of a high-fidelity interatomic potential. In
general, a more transferrable (flexible for many phases) po-
tential is more difficult to parameterize for capturing crystal-
line growth because the properties of various phases vary
more dramatically with changes of the parameters.

Since the refined parameterization only updates the por-
tions of the potential containing CdTe interactions many of the
parameters remain consistent with the previous potentials [7,
8]. This particular fitting process includes a total of 40 param-
eters. However, many parameters can be fixed prior to the
fitting process. ζ1-ζ4,r0, r c, r1, r cut, cσ, aπ, fσ, kσ, g0 are all
chosen before optimizing the remaining parameters (see [7]
for details). This leaves 25 parameters to be determined.
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